

RMS Value (Root Mean Square Value)

RMS Value (Root Mean Square Value)

$$
I^{2} R T^{\prime}=R T, \frac{i_{1}^{2}+i_{2}^{2}+\cdots+i_{n}^{2}}{n}
$$

$$
I^{2}=\frac{i_{1}^{2}+i_{2}^{2}+\cdots+i_{n}^{2}}{n}=\text { mean of square of instantaneous currents }
$$

$\mathrm{I}=\sqrt{\frac{i_{1}^{2}+i_{2}^{2}+\cdots+i_{n}^{2}}{n}}=$ square root of mean of squares of instantaneous currents

$$
E=\sqrt{\frac{\left(e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}\right)}{n}}
$$

${ }^{\text {bro } 203}$

RMS Value - Integral method

RMS Value

RMS Value

The mean of the squares of instantaneous value of currents over the first half cycle $=$ area of the first half cycle of squared wave \div Its base

$$
\begin{aligned}
& =\frac{\int_{0}^{\pi} i^{2} d \theta}{\pi}=\frac{1}{\pi} \int_{0}^{\pi}\left(I_{m}^{2} \sin ^{2} \theta\right) d \theta \\
& =\frac{12}{\pi} \int_{0}^{\pi}\left(\frac{1-\cos 2 \theta \theta}{2}\right) d \theta \quad=\frac{\operatorname{lin}^{2}|\theta-\sin 2 \theta|_{0}^{\pi}}{2 \pi} \\
& =\frac{I_{m}^{2}}{2 \pi} \times \pi=\frac{I_{m}^{2}}{2}
\end{aligned}
$$

$$
\text { root of mean of squares (rms value) } \quad I=\sqrt{\frac{I_{m}^{2}}{2}}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}
$$

Average Value

* Average value of an alternating quantity is defined as that steady direct current which transfers across any circuit the same amount of charge as is transferred by the alternating current during the same time
* 1) Mid ordinate method

$$
I_{\text {avg }}=\frac{i_{1}+i_{2}+i_{3}+\ldots .+i_{n}}{n}
$$

Average Value- Analytical Method

sinusoidal current $\mathrm{i}=I_{m} \sin \theta$
$\mathrm{I}_{\mathrm{av}}=\frac{\text { Area under half cycle }}{\pi}$

$$
=\frac{\int_{0}^{\pi} i d \theta}{\pi}
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi} I_{m} \sin \theta d \theta
$$

$$
=\frac{I_{m}}{\pi}[-\operatorname{Cos} \theta]_{0}^{\pi}=\frac{2 \mathrm{I}_{\mathrm{m}}}{\pi} \quad I_{a v}=0.637 I_{m}
$$

Peak Factor/ Amplitude Factor (K_{p})

Peak factor $=\frac{\text { Maximum value }}{\text { RMS value }}$
$=\sqrt{2}$ for sinusoidal
$=1.414$

Form Factor (K_{f})

Form Factor $=\frac{\text { RMS value }}{\text { Average value }}$
$=1.11$ for sinusoidal

Tutorial
Given $\mathrm{i}=62.35 \sin 323 \mathrm{t}$ A. Find f, $\mathrm{I}, \mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{av}}, \mathrm{K}_{\mathrm{f}}$

In phase quantities

Leading current

Lagging current

$*$ Phasors which reaches the vertical position first in the assumed direction of rotation is called leading

AC Through a Purely Resistive Circuit

Let

AC Through a Purely Resistive Circuit

AC Through a Purely Resistive

 Circuit$$
i=\frac{V_{m}}{R} \sin \omega t
$$

i is maximum when $\sin \omega t$ is unity
ie

$$
\begin{gathered}
i=I_{m} \sin \omega t \\
I_{m}=\frac{V_{m}}{R} \\
I_{r m s}=\frac{V_{r m s}}{R} \\
V=I R
\end{gathered}
$$

Power in Purely R Circuit

$$
\begin{aligned}
p & =v i \\
p & =v i=V_{m} \sin \omega t \times I_{m} \sin \omega t \\
p & =V_{m} I_{m} \sin ^{2} \omega t \\
p & =\frac{V_{m} I_{m}}{2}(1-\cos 2 \omega t) \\
p & =\frac{V_{m} I_{m}}{2}-\frac{V_{m} I_{m}}{2} \cos 2 \omega t
\end{aligned}
$$

Power consists of
\square Constant part
$\frac{V_{m} I_{m}}{2}$
\square fluctuating part $\frac{V_{m} I_{m}}{2} \cos 2 \omega t$

Power in Purely R Circuit

For complete cycle, average value $\frac{V_{m} I_{m}}{2} \cos 2 \omega t \quad$ is
zero zero
\star Power for whole cycle $\quad=\frac{V_{m} I_{m}}{2}$
$=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}}$
$=V_{r m s} I_{r m s}$
$=V I=\frac{V^{2}}{R}=I^{2} R$

Power in Purely R Circuit

AC Through Purely Inductive Circuit

$\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t} \ldots . .1$
$\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{di}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \sin \omega \mathrm{t} \mathrm{dt}$
$i=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \int \sin \omega \mathrm{t} \mathrm{dt}$
$=\frac{\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{L}}(-\cos \omega t)$
$\mathrm{i}=\frac{\mathrm{V}_{\mathrm{m}}}{\omega L} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)$
$i=I_{m} \sin \left(\omega t-\frac{\pi}{2}\right) \ldots \ldots . .2$

Due to the inductance of the coil, a self induced emf $-L \frac{d i}{d t}$ is induced in the coil which opposes the applied voltage at every instant

AC Through Purely Inductive Circuit

AC Through Purely Inductive
 Circuit

$\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t} \ldots . .1$
Current through pure inductor lags the voltage across it by 90°
$\mathrm{V}_{\mathrm{m}}=\omega \mathrm{L} \mathrm{I}_{\mathrm{m}}$.
$=X_{L} \mathrm{I}_{\mathrm{m}}$.
$X_{L}=\omega L=2 \pi f$ L ------ inductive reactance, in ohm
$I_{m}=\frac{V_{m}}{X_{L}} \quad \frac{I_{m}}{\sqrt{2}}=\frac{V_{m} / \sqrt{2}}{X_{L}} \quad \mathbf{I}=\frac{\mathbf{V}}{\mathbf{X}_{\mathbf{L}}} \quad \mathbf{X}_{\mathbf{L}}=\frac{\mathbf{V}}{\mathbf{I}}$
$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right) \ldots \ldots . .2$

Phasor Diagram

$$
\frac{\bar{V}}{\bar{I}}=\frac{V \angle 0}{I \angle-90^{\circ}}=j X_{L} \text { where } \frac{V}{I}=X_{L} \quad \stackrel{\substack{90^{\circ}}}{\hat{\mathrm{I}}=\boldsymbol{I} \angle-90^{\circ}}
$$

Power in Purely L Circuit

$p=v i$

$p=v i=V_{m} \sin \omega t \times I_{m} \sin \left(\omega t-\frac{\pi}{2}\right)$
$p=-V_{m} I_{m} \sin \omega t \cos \omega t$
Power for complete cycle

$$
\begin{gathered}
P=-\frac{V_{m} I_{m}}{2} \int_{0}^{2 \pi} \sin 2 \omega t \\
p=-\frac{V_{m} I_{m}}{2}\left[\frac{-\cos 2 \omega t}{2}\right]_{0}^{2 \pi}=0
\end{gathered}
$$

Average power demand is zero. However Maximum value of instantaneous power is $\frac{V_{m} I_{m}}{2}$

Power in Purely L Circuit

AC Through Purely Capacitive Circuit

* v- pd developed between the plates of capacitor at any instant
* q- Charge on plates at that instant

AC Through Purely Capacitive

Circuit

$X_{c}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}$
$I_{m}=\frac{V_{m}}{X_{C}}$
$\frac{\boldsymbol{I}_{\boldsymbol{m}}}{\sqrt{2}}=\frac{\boldsymbol{V}_{\boldsymbol{m}} / \sqrt{2}}{\boldsymbol{X}_{\boldsymbol{C}}}$
$I=\frac{V}{X_{C}}$
$X_{C}=\frac{V}{I}$

* Comparing equations (1) and (2) it is clear that i is leading v by 90°

$$
\frac{\bar{V}}{\bar{I}}=\frac{V \angle 0}{I \angle 90^{0}}=-j X_{C} \text { where } \frac{V}{I}=X_{C}
$$

AC Through Purely Capacitive

 Circuit| $q=C v$ | |
| :--- | :--- |
| $v=V$ | $\sin \omega t$ |$\quad i=I_{m} \sin \left(\omega t+\frac{\pi}{2}\right) \ldots \ldots$ (2)

$v=V_{m} \sin \omega t \ldots \ldots .(1)$
$q=C V_{m} \sin \omega t$
$i=\frac{d q}{d t}$
$I_{m}=\frac{V_{m}}{1 / \omega C}=\frac{V_{m}}{X_{c}}$
$X_{c}=\frac{1}{\omega C}$
$i=\frac{d}{d t}\left(C V_{m} \sin \omega t\right)$
$i=\omega C V_{m}(\cos \omega t)$
$i=\frac{V_{m}}{1 / \omega C} \sin \left(\omega t+\frac{\pi}{2}\right)$

Power in Purely C Circuit

CIVIL

AC through Series RL Circuit

* V
$\star \mathrm{I}$
* $\mathrm{V}_{\mathrm{R}}=\mathrm{IR}$
$* V_{L}=1 X_{L}$

$* V_{R}=I R$
$* V_{L}=I X_{L}$

AC through Series RL Circuit

$V=I Z$
$Z=\sqrt{(R)^{2}+\left(X_{L}\right)^{2}}$

$V=\sqrt{V_{R}^{2}+V_{L}^{2}}$
$V=\sqrt{(I R)^{2}+\left(I X_{L}\right)^{2}}$
$V=I \sqrt{(R)^{2}+\left(X_{L}\right)^{2}}$
$\tan \phi=\frac{X_{L}}{R}=\frac{\omega L}{R}=\frac{\text { Reactance }}{\text { Resistance }}$
Br 02013

AC through Series RL Circuit

$$
\begin{aligned}
& v=V_{m} \sin \omega t \\
& i=I_{m} \sin (\omega t-\phi)
\end{aligned}
$$

AC through Series RL Circuit

* Instantaneous power consumed $p=v i$

$$
\begin{aligned}
& p=V_{m} \sin \omega t I_{m} \sin (\omega t-\phi) \\
& p=V_{m} I_{m} \sin \omega t \sin (\omega t-\phi) \\
& p=\frac{V_{m} I_{m}}{2}[\cos (\omega t-\omega t+\phi)-\cos (2 \omega t-\phi)] \\
& p=\frac{V_{m} I_{m}}{2}[\cos \phi-\cos (2 \omega t-\phi)]
\end{aligned}
$$

Constant part $\quad \frac{V_{m} I_{m}}{2} \cos \phi$
Double frequency component $\quad \frac{V_{m} I_{m}}{2}[\cos (2 \omega t-\phi)]$

AC through Series RL Circuit

$$
\begin{aligned}
& \text { Average Power }=\frac{V_{m} I_{m}}{2} \cos \phi \\
& \qquad \text { Power }=V I \cos \phi \\
& \cos \phi=\text { Power Factor } \\
& \cos \phi=\frac{R}{Z}
\end{aligned}
$$

Power

* Apparent Power

Symbol-S

- S=VI
- Unit- VA (Volt Ampere) or kVA
* Active Power
\square Symbol-P
$\square \mathrm{P}=\mathrm{VI} \cos \varphi$
Unit- W or kW
\square Power dissipated in resistive circuit
* Reactive Power
\square Symbol - Q
$\square \mathrm{Q}=\mathrm{VI} \sin \varphi$
\square Unit - VAR (Volt Ampere Reactive) or kVAR

Power in AC Circuit

$=I^{2} Z \angle \phi=I Z(I \cos \phi+j I \sin \phi)$
$=V I(\cos \phi+j \sin \phi)=P+j Q$
where $P=V I \cos \phi, \quad Q=V I \sin \phi$

$S=P+j Q$

Power Triangle

AC through a series RC Circuit

AC through a series RC Circuit

$$
\begin{array}{ll}
\bar{V}=\bar{V}_{R}+\bar{V}_{C} & \bar{V}_{R}=\bar{I} R+j 0 \\
V=\sqrt{V_{R}^{2}+V_{C}^{2}} & \bar{V}_{C}=0-j I \bar{X}_{C} \\
V=\sqrt{(I R)^{2}+\left(I X_{C}\right)^{2}} & \\
V=I \sqrt{(R)^{2}+\left(X_{C}\right)^{2}} & \\
V=I Z & \\
Z=\sqrt{(R)^{2}+\left(X_{C}\right)^{2}} &
\end{array}
$$

AC through a series RC Circuit

$$
\begin{aligned}
\hat{Z} & =\left(R-j X_{C}\right)=Z \angle-\phi \\
& =Z(\cos \phi-j \sin \phi) \\
R & =Z \cos \phi ; X_{C}=Z \sin \phi \\
\text { or } Z & =\sqrt{\left(R^{2}+X_{C}{ }^{2}\right)} ; \\
\phi & =\tan ^{-1}\left(\frac{X_{C}}{R}\right)=\tan ^{-1}\left(\frac{1}{\omega C R}\right)
\end{aligned}
$$

AC through a series RC Circuit

$i=I_{m} \sin \omega t$
$v=V_{m} \sin (\omega t-\phi)$

The current Leads behind the voltage by a phase angle ϕ

Power in series RC and RL Circuit

* Derive it
* Write down the frequency, rms and peak values of a voltage wave expressed as $v=14.1 \sin 1000 \pi t$. Write down the expressions for current flowing when this voltage is applied across a) 5Ω resistor, b) 1 mH inductor and c) $150 \mu \mathrm{~F}$ capacitor
* A coil has an inductance of 20 mH and a resistance of 5Ω. It is connected across a supply voltage of $\mathrm{v}=50 \sin 314 \mathrm{t}$. Obtain similar expression for current
* In a given RL circuit, $\mathrm{R}=3.5 \Omega$ and $\mathrm{L}=0.1 \mathrm{H}$. Find a) current through the circuit b) pf of a 50 Hz voltage $\mathrm{V}=220<30$ is applied across it
\div An ac voltage ($80+\mathrm{j} 60$) volts is applied to a circuit and current flowing is $(-4+\mathrm{j} 10)$ amperes. Find 1$)$ impedance of the circuit and 2) power consumed and phase angle

A current of 5 A flows though a non inductive resistance
in series with a coil when supplied at $250 \mathrm{~V}, 50 \mathrm{~Hz}$. If the
voltage across the resistance is 125 V and across the coil
200V. Calculate 1) impedance, resistance, and reactance
of coil 2) power absorbed by the coil 3) total power.
Draw Phasor diagram

AC through Series RLC Circuit

$$
\begin{aligned}
& V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}} \\
& V=\sqrt{(I R)^{2}+\left(I X_{L}-I X_{C}\right)^{2}} \\
& V=I \sqrt{(R)^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& V=I Z \\
& Z=\sqrt{(R)^{2}+\left(X_{L}-X_{C}\right)^{2}}
\end{aligned}
$$

Br 02013

AC through Series RLC Circuit

AC through Series RLC Circuit

* Let $i(t)=I_{m} \sin \omega t$
* Impedance, $Z=R+j\left(X_{L}-X_{C}\right)$
* (i) If $X_{L}=X_{C}$, resistive circuit
* (ii) If $X_{L}>X_{C}$, RL series circuit
* (iii) If $X_{L}<X_{C}$, RC series circuit

Circuit Elements
R
Impedance Z

- $\mathrm{M}_{\mathrm{m}}^{R}$
$-\|^{c}$.
- e^{L}.
- $\sim_{R}^{R}-1 H^{C}$
${ }^{C}$.
- M eeer $\quad \sqrt{R^{2}+X_{L}{ }^{2}}$

Negative, between -90° and 0°

$\sqrt{R^{2}+\left(X_{L}-X\right.}$
Positive, between 0° and 90°
Negative if $X_{C}>X_{L}$
Negative if $X_{C}>X_{L}$
Positive if $X_{C}<X_{L}$

Parallel RLC Cicruit

$$
\begin{aligned}
& v=V_{m} \sin \omega t \\
& \bar{V}=V \angle 0
\end{aligned}
$$

E Phasor Diagram -
$\bar{I}_{R}=\frac{V}{R} \angle 0 ; \bar{I}_{L}=\frac{V}{X_{L}} \angle-90 ;$ $\bar{I}_{C}=\frac{V}{X_{C}} \angle 90$

Parallel RLC Cicruit

$Y_{1}=\frac{1}{Z_{1}} ; Y_{2}=\frac{1}{Z_{2}} ; \ldots \ldots Y_{N}=\frac{1}{Z_{N}}$
$Y_{e q}=Y_{1}+Y_{2}+\ldots \ldots+Y_{N}=\frac{1}{Z_{e q}}=G_{e q} \pm j B_{e q}$
$I_{1}=V Y_{1} ; I_{2}=V Y_{2} ; \ldots . . I_{N}=V Y_{N}$
$I=I_{1}+I_{2}+\ldots . .+I_{N}=V Y_{e q}$
ELE101/102
Dept of E\&E,MIT Manipal
59

Parallel RLC Cicruit

For any parallel circuit,

$$
\begin{aligned}
& \mathrm{Y}=\frac{1}{\mathrm{Z}}=\text { Admittance } \\
& =\mathrm{G} \pm \mathrm{jB}
\end{aligned}
$$

Unit is Siemens
Where $\mathrm{G}=$ Conductance

$$
\mathrm{B}=\text { Susceptance }
$$

Problem

Two circuits $\mathbf{Z}_{A}=5+j 2 \Omega$ and $\mathbf{Z}_{\mathbf{B}}=\mathbf{6 - j 8} \Omega$ are in parallel across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find current in each branch, total current, power factor and power consumed.

$$
\text { Ans: } \quad \overline{\mathrm{I}}_{\mathrm{A}}=37.14 \angle-21.8^{\circ} \mathrm{A} \quad \overline{\mathrm{I}}_{\mathrm{B}}=20 \angle 53.13^{\circ} \mathrm{A}
$$

$$
\mathrm{I}=46.54 \angle 2.72^{\circ} \mathrm{A} \quad \cos \phi=\mathbf{0 . 9 9 8 8} \text { lead }
$$

$$
\text { Power }=9.297 \mathrm{~W}
$$

